Slide Bearings

• General information

 Function and Design Criteria

External Influences

General Information

- •Liquid Friction
- Main Types of Slide Bearings
- Materials in Use

Liquid Friction

• Newton's formula for liquid friction:

$$\tau = \eta * du / dy$$
 (inner friction)

Liquid Friction

Oil film:

Isobars of pad pressure

Liquid Friction

• Solving of Reynolds' differential equation:

$$\Delta T = 4*k*p*(2 + k\sigma^2) / (\rho*c)$$

 ΔT ...temp. diff. betw. inlet and outlet edge p.....mean pressure $\sigma = L/B$...length div. by width c.....spec. heat of liquid ρspec. weight of liquid

Isothermal lines of thrust pad

- Temperature at inlet edge
- Temperature at outlet edge

- Temperature difference

Function of liquid friction bearings

- Difference in diameter: shaft and bearing

- tilting of pads

Main Types of Slide Bearings

Axial (Thrust) Bearings fixed pads tilting pads

Radial Bearings with/without load single surface multiple surfaces (fixed or tilting pads)

Materials in Use

Running surface: steel in different hardness degrees (> 150 HB)

Bearing surface:

- White metal
- Bronze
- PTFE (TEFLON)

White Metal

Tin based alloys (without lead):

- good mechanical properties below 120° C

White metal with lead:

- good properties in case of no lubrication

Bronze

for higher temperatures

- for higher loads

PTFE (TEFLON)

- for low noise level
- lower losses
- lower temperature
- lower live time

Design Criteria

- Internal limits

Other losses in Bearings

- External Influences

Internal Limits

- Oil film Thickness

- Temperature

- Limits of Materials

- Oil film stiffness

Other Losses in Bearings

- Friction losses of rotating parts in oil

 \sim n^{2,6} for disks and cylinders

- Losses of sealing rings

n²on cylinder surface

- Pump losses (in case of self lubricating bearings)

$$\sim n^2$$

- Thrust bearing losses

$$\sim n^{1,7}$$

Oil-film stiffness of guide bearings

External Influences

- Oil: air release ability, foam behaviour

- Coolers: design of coolers, water temperature

- Static and dynamic load: vibrations